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An improved mathematical technique and a new code for deriving the conductivity tensor 

for collisionless plasmas have been developed. The method is applicable to a very general case, 
including both hot (relativistic) and cold magnetized plasmas, with only isotropic equilibrium 
distributions being considered here. The usual derivation starts from the relativistic Vlasov 
equation and leads to an integration over an infinite sum of Bessel functions which has to be 
done numerically. In the new solution the integration is carried out over a product of two 
Bessel functions only. This reduces the computing time very significantly. An added advantage 
over existing codes is our capability to perform the computations for waves propagating obli- 
quely to the magnetic field. Both improvements greatly facilitate investigations of properties of 
the plasma under conditions hitherto unexplored. 0 1985 Academic Press. Inc. 

I. INTRODUCTION 

The propagation of electromagnetic waves in plasmas is a fundamental 
theoretical problem of plasma physics. It also has important applications in most 
experimental fusion facilities. 

Relativistic temperatures have been reached, for example, in the electron rings of 
bumpy torus devices, such as the EBT at the Oak Ridge National Laboratory, and 
several mirror machines. The crucial stage in the analysis of this problem is the 
calculation of the conductivity tensor. In this paper we present an improved method 
of calculating this tensor in the general temperature range, including hot 
(relativistic) magnetized plasmas. This method not only increases the efficiency of 
the calculation substantially (a factor of 100 in computer time in some cases com- 
pared to previous methods), but also enables us to investigate domains of 
parameters (temperatures, wave numbers, etc.) that have not been explored before, 
such as hot plasmas with k,, # 0, i.e., waves propagating at an oblique angle to the 
magnetic field. 

To solve the wave propagation problem one can start from the linearized Vlasov 
equation, which can be taken generally as relativistic. The usual solution leads to 
an infinite sum of terms, each of which contains a Bessel function of the momentum 

and has to be integrated over the momentum space. An analytic approximation of 
the result is possible only in special cases, such as cold. plasmas (see e.g., Rrall 2nd 
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Trivelpiece [ 11, Stix [a], Sitenko and Stepanov [3]) or warm plasma near the 
cyclotron resonance (I. P. Shkarofsky [4], K. Imre and W. Weitzner [S]). In the 
general case the integration has to be done numerically. Calculations of this kind 
have been carried out (Batchelor and Goldlinger [6]) and have proven to be very 
costly in computer time terms. The new method is based on a new solution of the 
Vlasov equation, introduced in this paper, which leads to a much simpler result, i.e., 
an integral over one term involving two Bessel functions only. 

The numerical integration has presented us with several problems. Some of the 
techniques for their solution are briefly described below: 

1. An infinite number of singularities arising from a factorf(o)/sin(7co) in the 
integrand. We subtracted and added a term f(n)/sin(nw) where n is the singular 
point (an integer). This makes the integral regular, while the added term is easier to 
handle then the original integrand. 

2. The integration is over a two dimensional semi-infinite domain with a 
weight function decaying very slowly (at high temperatures) towards infinity. We 
used the Gauss-Laguerre integration method on the semi-infinite variable and the 
Gauss-Legendre method on the other variable. 

3. Routines for calculating the Bessel functions J,(z) were available on the 
MFE network only with the restriction of a real argument. For a complex 
argument we have expanded the functions in a Taylor series and extended the 
expansion to the complex domain. To avoid the singularities near z= 0, arising 
from the factor z” at the beginning of the power series, we have expanded the 
function Z-“J”(z) rather than J,(z) and divided the result by z-“. 

4. We tried several methods to find the zeroes of the dispersion function. A 
second order Newton-Raphson method (in the complex plane) with back averaging 
to help dampen the oscillations was the most successful over most of the tem- 
perature range. Some ready-made zero finders, like the ZANLYT of the IMSL 
library and the SNSQE of the SLATEC library, were also good at low and inter- 
mediate temperatures (except at k ZO). At high temperatures the solution may 
sometimes have to be found graphically, as the dispersion function behaves less well 
in this region. 

The next section will describe in detail the mathematical solution of the 
relativistic Vlasov equation. Section III will describe the integration methods and in 
Section IV we shall give and discuss various results. 

II. DERIVATION OF THE CONDUCTIVITY TENSOR 

The relativistic Vlasov equation in the Fourier space is [7] 
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where 

and G = G(p) is the equilibrium function. In the following we shall restrict ourselves 
to an isotropic G, and thus the terms proportional to the magnetic perturbation 
will vanish. For a G depending on the pitch angle, these terms would be retained 
throughout the following treatment, with B, being eliminated by the Maxwell 
equation k x E = coB,. These terms can be handled, with no particular difficulty, by 
the same procedure that we shall apply to the remaining ones. 

We choose our coordinate system as follows: 

B,=(O,O, 1) 

k = (0, k,, k,,) 

v = (v, cos 4, v1 sin I$, 2’,,) 

p = (Pi cos 4, Pi sin Is, P,,). 

In this coordinate system we can develop some of the terms of the equation as 

k.v=k,v, sin~+k,,u,, 

and obtain a linear first order differential equation for f(d): 

o’G 
i(rr,~(p)li,,p,,+k~P~sinm,i-~~~= -~Y(~)E.PT 

aP /2’ 

Going over to the circularly polarized electric vector E one has 

E.p=E,p, cosq5+E,p, sind+E,p,! 

=Pie’~.~(E,-i~~)+P,e-‘~.~(E,+iE,)CE,p,, 

=p,(ei4E- +e-‘“E+)+E,,p,,. 

We are interested in finding the current vector J defined as 
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J,, = P s fuz d%. 

Using the previous relations these can be written as 

J,=+ ” 
s 

.-pj-d’p=;p 
Y(P) s 

f 
- e’@p: dp, dp,, d$ 
Y(P) 

Thus one has to findf and substitute it in J. The following solution satisfies the dif- 
ferential equation forf(4), namely, the relativistic Vlasov equation, as well as the 
condition of periodicity in 4, 

f= 

exp i(o*d - k, pL cos f$)/Q, df2n 
e - 2niw*/X2c -1 I 

dqb’ exp - i(o*& -k, p,. cos @)/Q, 
4 

X~I(E-e’m.+E+e-‘~)p,+E,,p,,] 
c 

g Y(P) 

where w* = WY(P) + k,, p,,. For simplicity we renormalize the variables as 

-I-E,=E,, 
m-Q, 

In the expression for f we set 4’ = 4 + 4” to obtain (dropping the bars) 

+ Y(pymm) 2~ 
e 2nrw* i -1 0 

dqY’ exp[ - io*4” - 2ikl pI sin(b + 9”/2) sin(@‘/2)] 

x [pL(E e-ibe-14” i- + E-eiBei4”) + El,Pr,]. 

The current J’ is now (denoting J; = 2J,, J;, = J,,) 
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x exp[ -iw*qS” - 2ik, pI sin(q3 + $“/2) sin(@‘/2)] 

PW”” p: e2i4ei+d” 

X de 
-2i+iq$” p; ei4m 

p~p,,e-‘4-w plp,,p+4”, 

where 

G’ = WP) 
a$/2 . 

We make the change of variables 

to obtain 

xexp[-2io*J-2ik,p, sinqTcos$] 

-p:e-24 P;e2$ 

X p:e-2’$ -p$ e2i5 

-ipllpLe ‘“em@ ir$ id; ip,,p.e e 

To do the 6 integration we use the formulae [S] 

(E). 

where J,(z) are Bessel functions (c is an arbitrary constant) and obtain 

(3’) = 2nip !” PI dp, dp,, G’ n/2 
sin 7tw* s-,, edziiw* d$ 
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where 

cf = 2k, pL cos 4. 

We now combine the two halves of each integral, i.e., the part on the interval 
[-z/2,0] with the part on CO, n/2], into one integral over [0, n/2] and obtain 

J’=47@[ pi dp, dp,, G’ n/2 sinno* lo d$fi’.E 

with 

-p~Jocos2(o*+1)~ pi J2 cos 2~073 
Qf= p: J2 cos 245 -pt J,, cos 2(w* - 1) 4 

-ipL p,, J, cos(20” + 1) d -ipL p,, J1 cos(20* - 1) $ 

ipi p,, J, cos(20* + 1) $ 
ipI p,, J, cos(2co* - 1) 6 

pi Jo cos 20*$ 

where J,, = J,(r). 
We can now use the formula 

J,(Z) J,(z) = i 1:” J, + ,(22 COS e) COS(p - V) 8 de. 

We can identify z and 8 in the formula above with our variables k,p, and &. To 
bring the integral on each element in @I’ to the form of the right hand side of the 
above formula, we identify the factor of $ in the argument of each cosine function 
with p - v, and the index of each J,,1,2 with ,U + v, so that we obtain a simple set of 
two equations for p, v, for each element. We finally obtain 

J’ =2x*& 
s 

PI dp, dp,, G’ A. E 
sin nw* 

with 

where 

Jv = J,(z) = Jv(ki PI ). 

Thus, we have obtained an integrand which is a product of two Bessel functions 
only. The integration variables pL and pll now appear both in the argument of the 
Bessel functions and in their index. 
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The usual infinite-series solution of the Vlasov equation is the Mittag-Lefler 
expansion [9] of the above solution. 

We note that in going back to the original normalization we only have to replace 
the factor 2rc2 in front of the integral by 7m$/2Q2, where o, is the plasma frequency 
0; = 471ne2/m. 

It now remains to integrate each term over the momentum variables pI, p,, . The 
resulting conductivity tensor ii, defined by J = BE, is then inserted in the dispersion 
function D 

D=det[?(l-nl)+nn+:BJ 

whose roots have to be found (n = kc/w). 
A representation of D employing a product of two Bessel functions has been 

previously obtained for the special case of an electrostatic, nonrelativistic plasma 
having a Lorentzian distribution in the parallel direction by Hall, Heckrotte, and 
Kammash [lo]. 

III. THE INTEGRATION METHOD 

The integrand derived in the last section is of the form S(w*)/sin(Ew*) (where 
CD* = w*(pI, pi,)) and thus it has a singularity at every integer o*. Although these 
singularities do not lead to overflows in the computer, they make the integral 
indefinite; i.e., it does not converge to any definite value when refining the mesh. 

To handle the situation we subtract and add a termf(u)/sin(no*) in the interval 
around each singularity CD* = IZ (n = integer). Thus we can write 

s n+ 1/z f(w*) dw* = n+ Wf(w*) -f(n) 
n - 1j2 sin ~CW* i 

rn+l12 
n-112 sin no* 

dw*+j 
f(n) dw*. 

,, - 1/2 sin 7cw * 

The first integral on the right hand side is regular and poses no problem. The 
second integral has a constant numerator and is thus easier to deal with. It is con- 
venient to use w* as one of the integration variables (rather then pI or p,,). We 
divide the range of integration over w* into symmetric intervals around the integers 
and use the Plemelj formula in each interval. The singular integral in the above for- 
mula will read 

s n + l/2 
f(n) 

-dw*&‘j fen) 
n- 11~ sin 7cw* 

___ dw* - i6(0* - a)( - 1)“. 
sin 7rw* 

The principal value vanishes due to the symmetry of the interval (except at the 
beginning of the integration range) and we are left only with a 6 function. 

A variation of this method can be multiplying the constant f(n) by a symmetric 
function g(w*) with g(n) = 1 (on the singularities), for example, g = cos2(7rw*). This 
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can be used to make the final integrand smoother at the borders between the 
integration intervals (n &- 1) so that the numerical integration is more accurate. 

The other coordinate in the two-dimensional integration has to be chosen in such 
a way that the Jacobian of the transformation from pI, p,, to the new coordinates 
will not be singular. Neither pI nor p,, will do and we have found the resulting 
singularities difficult to remove. Thus we use the quantity p=p,,/y(p) as a second 
coordinate. It has the range [ - 1, + 11 and corresponds to an angle in a polar 
coordinate system. 

The inverse transformation is (denoting 0 = 0*/o, p =p,,/y(p), and yl,, = k,, c/u) 

op 
PI’= 1 +n,,p 

I 

(l-p2)(jj2-1 l/2 

pL = (1 +n,,P)2 I 

while the Jacobian is 

atPI, P,,) _ Y(P12 

ab*, PI - -0 +qP) PLO’ 

It is obvious from the expression for pI that 101 has to be greater than a minimal 
value Omin for pl to be real: 

It is convenient to substitute this value in the expression for p, to obtain 

p1 = [(l --2)(n~2+2druos,i”)]‘~2~ 
1 + yl/i p’ 

where dti = 0 - ~55,~~. For ni, = 0 one can see from the expression for pI that the 
points (a*, p) and (ID*, -j?) correspond to the same pI. As the Bessel functions 
depend only on o* and pl, one can save on the number of calls to the expensive 
Bessel subroutines by storing their values computed for the positive p mesh points 
and use them for the points with negative j?. For yl,, # 0 (but 4 1) the situation is a 
little more complicated. We divide the interval [ - 1, l] in two: a = [ - 1, -n,,] and 
b = [ -n,, , 11. For every point p E b there is a point p’ E a corresponding to the same 
pI (and the same o*) and thus having the same Bessel function. This point is 

s 
p’= 1 -?z,,S 
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where 

1 1 
S=r ~ P,, + Do-( + 1 )I. 

q - 1 1 + q p 

In the interval b we integrate over p as before, and in the interval a we integrate 
over p’. The Jacobian of the transformation from p to p’ is 

$= -(I -+d2 (1 +n,& 

The equilibrium function G(p) used in the integrand was the relativistic 
Maxwellian, 

G(p)=Ae -w(P) 
47ck,(a) ’ 

where a = m,c*/KT and k,(a) is the Bessel function of the third kind. In om coor- 
dinates we have 

Y(P) =----FL 1 + l?.,, @’ 

Thus for a fixed p we have approximately an exponential weight function in the 
variable CD*, decaying quite slowly at high temperatures, and leaving a long tail to 
integrate upon. We have found the Gauss-Laguerre integration method [ll] most 
suitable for this situation. The integral is replaced by a sum 

s 
co 

e y-(X) dx = f W;f(xJ n i=l 

where 

XI are the zeroes of an nth order Laguerre polynomial and Wj are the weights for 
b = 1; n is the number of mesh points. We take the xi 7 Wi from a NAG library 
routine and modify them using the above formulae. 

For the p-integration we use the Gauss-Legendre integration method, which is 
suitable for a finite interval. 
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IV. RESULTS AND CONCLUSIONS 

The code has been run and tested on a CRAY-1 computer on the MFE network. 
Some of the conclusions are summarized below. 

1. Comparison with Other Results 

Other work has been done only for limited subsets of the parameter space in 
which our code is applicable. For example, there is no analytical or numerical work 
for k,, ~0, except at low temperatures near the cyclotron resonance. Using our code 
with k,, # 0 enables us to investigate waves propagating obliquely in respect to the 
magnetic field. Regarding temperatures, we have tried the range from 0.1 keV to 
well over 1 MeV and did not encounter any particular problem. We have compared 
our program with the much slower one of Batchelor and Goldfinger at k,, = 0, for a 
wide range of temperatures and frequencies, and found generally a very good 
agreement (Figs. 1, 2). At low temperatures we could compare it with Imre’s work, 
with k,, #O, and with the analytical expansion of Shkarofsky, again with a very 
good agreement (Fig. 2). 

A comparison with the nonrelativistic analytic results of Sitenko and Stepanov 
has been made, after modifying our code to a nonrelativistic one. The agreement 
below 20 keV (at k, = 0.5) was about 0.1%. (In their expansion Tk: 4 1.) 

2. Timing 

At 50 keV we needed about 0.05 CRAY seconds to compute the conductivity ten- 
sor. At 300 keV the time rose to 0.12 s. Finding a root of the dispersion function 
requires less than this time multiplied by the number of iterations, because when 

3.36. , , / , , , , , / , , , , , , , , , , , , LL- 
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3.16 c--- --------------_---_ ---------y 

3.14 

3.12 I I I I I I I I I I I I I I I I I I I I I I I 
A2 .46 .50 .54 58 .62 .66 .70 .74 .78 .82 .86 .90 

FIG. 1. Comparison between our results and Batchelor and Goldfinger’s (ordinary mode). 
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0.6 
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GOLDFiNGER 

---- SHKAROFSKY 
000~ PRESENT WORK 

% 

w 

FIG. 2. Coparison between fully relativistic dispersion code and weakly relativistic expansion 
(Shkarofsky) (extraordinary mode). 

the iterations are close, we can use the Taylor expansion of the Bessel functions 
already existing in the code (for calculation with complex argument) rather than 
re-calculating the Bessel functions. For a good initial guess, the program does 8-10 
iterations in about twice the time of one. For an arbitrary initial guess this time will 
increase by 2 or 3. (A good guess can be supplied, for example, by the Appleton- 
H&tree equation.) This timing is 50-100 times faster than in other codes, The tim- 
ing for nil < 1, which is the physically significant case, is not much longer than in the 
nil = 0 case. Otherwise more mesh points are needed to integrate over the whole j’ 
range as indicated above, 

3. Accurffcy 

The number of mesh points needed depends on the temperature and wave fre- 
quency. At 50 keV and not close to the resonance we used a 16 x 16 point mesh 
Refining it to 32 x 32 points changed the results by less than 0.5%. At 300 keV we 
needed 20 x 20 points, and similarily for very low temperatures. At the very high 
end of the temperature range 32 points were needed in the o* direction. 

4. General features 

The resonances are clearly visible at the harmonics of the cyclotron frequency. 
The higher harmonics become more pronounced as k, increases (Fig. 3). At low 
temperatures the resonances are very sharp. Interestingly, the relativistic effect is 
very important here, because it broadens the resonances that would have become 
singularly sharp as T -+ 0 in a non-relativistic theory. The resonances gradually 

581/61!3-5 
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w 

FIG. 3. kL dependence of Im c,.JQ,/~) at T= 25 keV. 

widen and overlap as the temperature increases (Figs. 4, 5), until the curve flattens 
out almost completely at high temperatures, except for a development of a 
resonance near the velocity of light (i.e., when kc/w z 1) (Fig. 6). This resonance 
sharpens with further temperature increase (Fig. 6). 

The code is available for public use, as a FORTRAN subroutine on the national 
Magnetic Fusion Energy computer network. 

6- 

-g I I I , , ,T=;ke] ( , I , , 1 
.2 .3 .4 .5 .6 .7 .6 .9 1.01 1.1 I.2 I.3 1.4 I.5 1.6 

22 
w 

FIG. 4. Temperature dependence of Im ~~,(.Ci?,/o). 
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FIG. 5. Temperature dependence of Re a,,(Q,/w) with ki c/Q, = 3. 
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FIG. 6. Temperature dependence of Im u,,(QJw) with k, c/Q, = 3. 
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